
 Josiah Orange

1

Table of Contents

Project Analysis .. 2

Prospective Users .. 3

Researching the Problem ... 3

Mailchimp: an email management and design system. ... 3

Interview ... 4

Limitations .. 5

Objectives. ... 6

Initial Diagrams ... 7

Initial PHP Class Diagram ... 7

Initial Database System Design ... 8

Intended algorithms, techniques, and methods. ... 8

Prototyping parts of my Program .. 9

Communicate with the database using SQL. .. 9

Track whether an email has been opened or not. ... 10

Test Dragging and dropping. .. 11

Being able to send emails using php using PHPMailer. Allows attachments, embedded images and more

customisation. .. 11

Documented Design .. 13

Diagram Designs and System Structure ... 13

PHP Structure Diagram (file stacking) .. 13

Ajax Structure Diagram... 14

User Interface Design ... 14

Revised Class Diagram ... 16

Revised Database Structure ... 16

Fonts & Images ... 17

Password Encryption System.. 17

Email Opened Tracking System .. 17

Image Upload and Embedding System ... 17

Template Saving and Selecting ... 17

Key Variables.. 18

SQL Design .. 20

Get Templates .. 20

Save Templates .. 20

Get Admin Information .. 21

Get Emails .. 21

 Josiah Orange

2

Key Algorithms ... 21

Communicating with Database (SELECT Templates) ... 21

Communicating with Database (INSERT Template) .. 22

Removing the attributes inside the generated html for website content to be ready to be sent (function

mouldContents) .. 22

Generate SQL to get the Email Recipients (function generateRecipients) 22

Adding a new image to dictionary of images. .. 24

Encryption Algorithm .. 25

Testing ... 25

Test Plan .. 25

Evaluation .. 29

Technical Solution: ... 33

frontadmin.php (admin) .. 36

postdelivery.php (admin) .. 42

index.php (admin) .. 43

header.php (admin) .. 44

fileupload.php (admin) .. 45

template.php (admin) ... 46

customer.php (admin) .. 47

database.php ... 48

header.php (front end) ... 54

index.php (front end) .. 54

adminjava.js ... 54

adminstyle.css .. 59

frontjava.js .. 59

frontstyle.css .. 63

Project Analysis

Project Title: Email List Manager as well as Mass Email Designer and Sender.

Andrew owns the company by the name of ‘Orange Lighting’. The company has always sold lights to large scale or personal

building projects, acting as the in between for the lighting suppliers and the clients as well as helping design the interiors.

However, as of recent the company’s owner is looking towards moving forward into the blogging and educational industry. As

part of this as well alongside his normal work, Andrew needs a system of collecting email addresses from forms to be stored in

a database as well as being able to design emails which are sent to these collected email addresses in mass. He wants to be

 Josiah Orange

3

able to select emails depending on factors such as where they signed up and for what as well as other factors like whether

they have opened past emails. He wants a system that manages email lists and the customers that sign up for these email lists

and an email design and sending interface that utilises these newsletters as well as other factors to target customers with

emails. Andrew’s main problem is he wants to have a great email design interface which sends emails that look good on all

possible mail clients.

He wants the emails to look visually appealing on all email clients and have a user friendly, drag and drop system to design his

emails.

Andrew wants this system to include some form of admin area and the ability to sign up for these emails in his website. Ideally,

this admin area would be a closed off part of his website that requires login.

Mail marketing platforms such as Mailchimp and Moosend are very widely used by businesses and online presence. They are

used to allow people to easily design and manage emails in a user-friendly way. However, the problem with these tools is that

they are not bespoke which can lead to third party complications as well as a limit on the specific user-friendly nature of a

complex system like Mailchimp. Andrew would like a much more bespoke system, made specifically for his needs at this time

to help with efficiency as well as reduce third party dependency. Services like mail-chimp are paid for regularly and the pricing

can add up. A bespoke system would not be so expensive in the long run. Andrew has specifically stated that he does not

enjoy using third party systems such as Mailchimp.

The system will allow Andrew to do specific targeting of audiences with information that they give him and he collects.

Prospective Users

The users that are expected to interact with this project will be in later adulthood (30-50) and therefore are likely to be

technically inadept. Therefore the user interface needs to be extra rigorous when it comes to input validation and the way in

which the user interacts with the program.

As well as this, the fact that the users will likely be technically adept will contribute to the importance of a very clear and user-

friendly nature of the user interface.

The use of the admin area of the program will be Andrew who, considering he didn’t like the interface of other similar mail

management systems like Mailchimp, will want a very simple, efficient and easy to learn user interface. Andrew also struggles

with eyesight so fonts and potential Images should be reasonably large and easy to read. On the other hand, Andrew does

have some experience, while limited, with HTML and CSS syntax which might help him with understanding the user interface.

Researching the Problem

Mailchimp: an email management and design system.

Relevant features that Mailchimp possesses:

- Designing Email contents with extensive library of widgets and templates.

- Target audience using specific variables chosen by the user.

- Landing Pages, Social Ads, and Postcards etc (helping with marketing).

- Relatively complicated to implement for a user. User designs the form on the mail chimp website. Although they have

options like landing pages etc.

- Being able to view the mail list and all the emails and clients that have been collected as well as being able to add

more manually and delete them too.

- The handling of emails all happens on a separate website not integrated into your own website. This Is slightly better

with speed

Advantages/Disadvantages of Mail Chimp.

Advantages Disadvantages

A lot of form customisation. Extensive customisation means complication

and complexity for the user’s experience.

 Josiah Orange

4

Extensive email visual customisation. Subscription service, paying to keep the

system every month.

Multiple ways of signing up for an email list. Relying on third party service.

Interview

Questions and Answers

What is the problem you want to find a solution to?

Andrew doesn’t like email software such as Mail Chimp and therefore wants something much simpler and easy to navigate so

he can send emails to his clients. He wants a means of contacting the people that sign up to his lists. This is something he

hadn’t had before.
How do you want your clients to sign up to your newsletters?
Andrew wants clients to sign up through forms on his website.
How do you want to design your emails?
Andrew wants a simple and clean drag and drop system to design emails before they were sent to his clients.
What factors to do you want that will allow you to choose who receives these emails?
Andrew wants to be able to target clients that have or haven’t opened an email of his before. He also wants to be able to

target different email lists as well as be able to send to specific emails as well as target specific client names.
Where do you want to design these emails?
Andrew wants to have some kind of admin area connected to his website that he can use to design the emails.
What information do you want your clients to give you? These can be used as factors?
Andrew wants the clients to give their email, name and profession. Although with some of the forms/lists they don’t need to

give their profession.
What are the different email lists you want to have featured on your website?
Andrew wants to have a main list which requires the name, email and profession of the client. He also wants a product

recommendation list which does not require profession. The last list is a lighting updates list which does not also need to have

profession.
What are the different professions that your customers can select for sign up?
Designer, Architect, Retail Customer, Lighting Consultant, Electrician/Contractors.

Are there any other features you would like implemented?

Andrew says he wants to have a way to create templates that he can save and use in future email designs. This is to help him

with efficiency.

Initial System Design from Interview Information

Observation of current ‘Orange Lighting’ email design.

 Josiah Orange

5

- Andrew currently uses mail chimp as his means of sending out customised emails to his clients

- The email uses Images as its means of adding graphical content and colour.

- Uses a very simple design with elements like text boxes, titles, Images and links.

- It uses a header and a footer to the email.

- The email has a very clear colour scheme using brown with orange highlights.

- In the footer, it tells the reader that the reason for their receiving the email (because they have already been reading

emails).

- Readers have the ability to opt out of receiving emails.

- The email is watermarked by Mail Chimp – not so great for brand emails.

Limitations

The project being built is open to complexity and there will therefore be many possible future improvements and

missing features. The limitations and/or missing features include:

- There is no ability to send out timed campaigns that use a tick because of the lack of means of hosting a

server. (This would add extra cost).

- There is no way of Andrew adding more factors that could affect the receiver of the email.

- Due to the program being bespoke, Andrew will not have specific help from Forums and others outside of

the developers of the program.

- There will not be collecting and storing of very personal information like date of birth (the users are signing

up for an email list, not a login account).

- There will not be any way of Andrew adding new email lists and forms.

 Josiah Orange

6

- The design capabilities will be limited due to a lack of available time for development e.g. changing the style

of nodes e.g. the colour of text.

Objectives.

Must be included:

1: Andrew must have an admin area where he can manage his email system to perform tasks.
1.1: The admin area should only be reached through: websitename.com/admin.

1.2: The admin area should only be reached through a login page.

1.2.1: The admin area login must use a username and a password that only Andrew knows.

1.2.1: The password must be stored in an encrypted form.

1.2.2: If not logged in the browser will be redirected to the admin login page.

1.2.3: The username and password should be validated properly and there should be no way that anybody can

access any areas of the admin area without being in a logged in session.

1.3: There must be the ability to log out from the admin area and the browser is redirected to the login page again.

1.4: Andrew must be able to design emails to be sent to clients. There must be a simple, interactive user interface

in the admin area.

1.4.1: Andrew must be able to drag and drop elements into his central design and be able to edit these

elements/nodes to make the email customised and look as he desires.

1.4.2: Elements of the design must be able to be shuffled around and rearranged.

1.4.3: Elements of the design must be able to be deleted and replaced.

1.4.4: The design nodes on the left must be labelled and easily understood as to their functionality so Andrew

easily know what to drag over to the design construction box.

1.4.5: When these nodes are clicked the contents of the node should be able to be changed e.g. change text. The

outline should be changed to suggest to Andrew that the node is in edit mode. When in edit mode the node should

be able to be deleted. This should only be the case when dragged into construction box.

1.4.6: The emails that are sent must look good and be accessible in all web clients. Therefore, The program must

take into the fact that some clients handle email contents differently such as the handling of CSS or even HTML

tags. If the client does not accept the use of HTML, then remove the HTML tags and styling from the contents.

1.5: Andrew must be able to specify which emails receive the email he has designed/is designing by using a variety

of factors.

1.5.1: Andrew must be able to choose what newsletter subscriptions receive the email.

1.5.2: He must also be able to use the name of the clients to decide who receives the emails.

1.5.3: Andrew must have the ability to only email clients if they haven’t opened an email before.

1.5.4: Andrew must also be able to send emails to specific email addresses if he desires.

1.6: Andrew must be able to save and utilise email templates to give him a head start in his designs.

1.6.1: Andrew must be able to save the current state of his design as a template which can be retrieved at a later

date.

1.6.1.1: A template name must be submitted before saving the template. There must be something inside the

templates content and there must be a subject entered.

1.6.2: Andrew must be able to select a template from a drop down.

1.6.4: The current state of the email design will be lost therefore Andrew must be warned before the template is

loaded.

1.7: It should only take Andrew 5 minutes to get to grips with the user interface.

2: There must be forms in the front end of Andrew’s website that allows website visitors to sign up for his email
lists.
2.1: There will be 3 email lists that can be signed up for on the front end of Andrew’s website: Mail Email List,

Lighting Updates and Recommended Products.

 Josiah Orange

7

2.1.1: All lists will require name and email however the Main Email List will also require the profession.

2.2: All inputs will require rigid validation. The email must be in email format, the names must start with a capital.

2.3:There must input spam protection for the forms.

2.4: The users must be notified if their information is processed successfully and whether the information is not

successfully processed. Notified if customer has signed up successfully, if Andrew has sent email successfully, if

template has been saved successfully.

3: All SQL must be secure and protected from security risks like SQL injection. All information must be easily and
quickly accessible from the database due to an efficient database design.
3.1: It must be a fully normalised database preventing any inaccurate data.

4: Andrew must be able to have a send email button which will then display ‘sending…’ until all the emails have

been sent which then will display ‘sent’.

5: When an email is opened the database must be updated so that it knows that the email has been opened by the

customer.

Should be included:
1: When the user makes a big change, they should be notified which they then have to confirm their choices.

1.1: This includes when a template is deleted, when the page is refreshed, when pressing send email, when

selecting a template.

2: There should be an ‘add new email’ form in the admin area similar to the form on the front page to allow Andrew

to add his own emails to the email list.

3: Clients should be able to sign up for multiple newsletters simultaneously without causing any problems inside the

program and in the database. The client should be able to sign up through different forms in the front end of the

website.

4: Clients should not be able to input their email more than once which would spark an error message.

5: It should only take Andrew 5-10 minutes to fully grasp the user interface.

6: Andrew should be able to delete templates he has previously saved.

7: Andrew’s emails should be able to be sent to all browsers and look good on all browsers, specifically Gmail and

Outlook.

Could be included:
1: There could be the ability to manually add and or remove someone to the email list through the admin area. This

should be a separate part of the admin area. This should be done through another simple user interface.

2: The clients could opt in and opt out of email list and email sending from the front end as well as from the emails

being sent. This could be a link at the bottom of the emails being sent out as well as an option on the front page of

the website (in the footer).

Initial Diagrams

Initial PHP Class Diagram

 Josiah Orange

8

Initial Database System Design

Intended algorithms, techniques, and methods.

The program will use an object-oriented approach to my program. It will likely use:

- Arrays and possibly a dictionary

- Encryption

- Both selection and iteration (if, for, foreach,

- Communicating with a database (SQL).

- Namespaces

- Ajax

- PHP Objects

- PHP Class Objects.

- Constant Variables

- Private and Public Variables (get and set)

- File Upload.

 Josiah Orange

9

- PHP sessions.

- PHP include/require

- Reading and Writing to a text file

- Regex

Programming Languages: Javascript, HTML, CSS, JQuery, SQL,

PHP.

Prototyping parts of my Program

I have decided to prototype the parts of my program that I am not 100% sure I can do or do not have a huge

amount of experience doing.

Communicate with the database using SQL.

I will be using MySQL workbench on my Home PC to store and communicate with my database. However this

algorithm is not protected from SQL injection and therefore a new method will have to be found to achieve this.

 Josiah Orange

10

Code Help

(w3Schools, PHP MySQL Insert Data, n.d.) : https://www.w3schools.com/php/php_mysql_insert.asp

Track whether an email has been opened or not.

https://www.w3schools.com/php/php_mysql_insert.asp

 Josiah Orange

11

Tracker link is placed as the src for an image in every email. This Image does not appear but will connect to the src

address giving it the information about the client, so the system knows that the client has opened the email and

processed this image. This information can then be used later down the line for targeting emails.

Test Dragging and dropping.

Dragging and dropping using HTML/CSS will be essential to building my mail creation interface. Users will be able

to drag elements into their email template.

<script>

function allowDrop(ev) {

 ev.preventDefault();

}

function drag(ev) {

 ev.dataTransfer.setData("text", ev.target.id);

}

function drop(ev) {

 ev.preventDefault();

 ev.target.appendChild(document.getElementById(data));

}

</script>

<div id="div1" ondrop="drop(event)" ondragover="allowDrop(event)"></div>

<div id="div1" ondrop="drop(event)" ondragover="allowDrop(event)"></div>

 <?php

echo "<button>Login</button>";

Code Help

(w3schools., n.d.) : https://www.w3schools.com/html/html5_draganddrop.asp

Being able to send emails using php using PHPMailer. Allows attachments,

embedded images and more customisation.

PHPMailer is a package of code that allows you to do much more with php when it comes to sending mail.
To install PHPMailer, I had to install Composer API – a dependency manager. This is a dependency manager for PHP allowing

me to install other php files/ extensions into my project. This was installed through Command Prompt. The installed files were a

vendor and scripts folder as well as a composer file (for the dependency manager). These contained scripts containing code

and classes in which I could reference from my code without too much extra effort.

https://www.w3schools.com/html/html5_draganddrop.asp

 Josiah Orange

12

I tested PHP mailer using my own email. Here is some of the code. I had to call the PHPMailer scripts from inside my code and

I had to use Gmail’s smtp information to send the emails. The good thing about PHPMailer

 is it allow you to easily send emails as html and if the destination mail client doesn’t support html then I just remove the html

tags and send it as basic string. Another great thing is that it allows you to send attachments.

use PHPMailer\PHPMailer\PHPMailer;

use PHPMailer\PHPMailer\SMTP;

use PHPMailer\PHPMailer\Exception;

class PostOffice{

 static function SendMail() {

 // Load Composer's autoloader

 require 'vendor/autoload.php';

 // Instantiation and passing `true` enables exceptions

 $mail = new PHPMailer(true);

 try {

 //Server settings

 $mail->SMTPDebug = SMTP::DEBUG_SERVER;

 $mail->isSMTP();

 $mail->Host = 'smtp.gmail.com';

 $mail->SMTPAuth = true;

 $mail->Username = 'myemail;

 $mail->Password = 'password;

 $mail->SMTPSecure = PHPMailer::ENCRYPTION_STARTTLS;

 $mail->Port= 587;

 //Recipients

 $mail->setFrom('myemail, 'Josiah');

 $mail->addAddress(myemail, 'Josiah');

 $mail->addReplyTo('myemail, 'Josiah');

 $body = '<p><strong style="background-colour:#000;">Hello! this is my first test email</p>';

 Josiah Orange

13

 // Content

 $mail->isHTML(true);

 $mail->Subject = 'Test Email';

 $mail->Body = $body;

 $mail->AltBody = strip_tags($body);

 $mail->send();

 echo 'Message has been sent';

 } catch (Exception $e) {

 echo "Message could not be sent. Mailer Error: {$mail->ErrorInfo}";

 }

 }

}

Code Help

(GitHub, n.d.) : https://github.com/PHPMailer/PHPMailer

This code above is the default recommended code given by PHPMailer on Github. The code has been copied and

then can be altered to fit the specific program.

Documented Design

The program will have a fairly complex structure. It utilises two ways of getting user input information to code. One

being PHP include/require and the other being Ajax.

Ajax is used to pass user input information, primarily after a form submittion, that will be dealt with behind the

scenes. E.g. sending an email.

PHP ‘include’ allows for the utilisation of the code from the included file from within the main file. E.g. calling

database functions from included database.php to get information from the database.

The structure utilises namespaces which helps to separate the front end from the admin side of the PHP structure.

Javascript / JQuery
Javascript will be accessed through two ways – one from within the PHP file, calling from the HTML <script> tag.

This Is mainly for Ajax calls. The other will be from a separate JS file called from the header file.

Diagram Designs and System Structure

PHP Structure Diagram (file stacking)

This is not all the files used and all file associations. These are the connections between files that use the

‘include’ syntax to stack the php files. When a file is included, it allows for the other php files to utilise the

code inside the included file.

The Header php file, not only allows for a consistent header styling but also is the users access to all the

back end code.

https://github.com/PHPMailer/PHPMailer

 Josiah Orange

14

Ajax Structure Diagram

These are the ajax redirects for when I need to deal with information inputted by the user without a change of page

on the user side.

User Interface Design

 Josiah Orange

15

Front End

Admin Area

 Josiah Orange

16

Revised Class Diagram

This is not all the files and code but these are the classes that are used. Interactions only

shown when the classes are referenced from inside the other class.

Revised Database Structure

 Josiah Orange

17

Fonts & Images

Fonts and Images get separate folders in the admin area. When an Image gets uploaded it gets uploaded into the

images folder. All fonts being used in the website are stored in the fonts folder.

The user interface will be using Open Sans as the font on the admin area. This allows for a more pleasing, user

friendly and readable admin area for Andrew. This will be stored in a fonts folder and references in adminstyle.css.

Password Encryption System

The encryption system is simple. All the encryption algorithms are performed in encryption.php. The key used in

the encryption is stored in encryptionkey.txt on the web server (localhost during development) and the cypher text

is stored in the database. When the cyphertext needs to be decrypted on login, the key is retrieved from the text

file and used to decrypt the cypher text retrieved from the database. The plain text is then encrypted again with a

new random key, the same length as the plain text and the cycle continues.

Email Opened Tracking System

When an email is sent, there will be an image attached with the src of tracker.php on the web server. The src will

pass in the email address of the customer who has opened the email and what newsletter the email is associated

with. tracker.php will use this information to update the database, incrementing the emailsOpened value as to

know an email has been opened by the customer. This information can then be used a factor/variable by Andrew to

specify email recipients in the future.

Image Upload and Embedding System

The image node will allow Andrew to browse and select an image from his computer. When this Image is selected,

the image’s information including its address on the computer is sent through ajax to fileupload.php where it

uploaded to the images folder. The preview in the admin area is then updated to reference the newly uploaded

local file. When the email is sent, the images information is passed through with the other email information so it

can be embedded by PHPMailer.

Template Saving and Selecting

The template system is simple. Andrew enters a template name and makes sure the subject and content is filled in

in the construction box in the admin area. The template is saved into the database using the algorithm in

database.php. When selecting the template the templates and their associated content, subject and name are

retrieved from the database and then once one has been selected, the content and subject is placed into the

construction box.

Key Files (Not all Files).

frontadmin.php This is the admin area php file. This is the file

that Andrew will spend most of his time. It loads

 Josiah Orange

18

all the user interface and brings together a lot

of the functionality of the admin area.

index.php (admin) This is the login page. The file is stored in the

admin folder and is therefore called when the

/admin/ is called in the URL. This is where

Andrew can login to his admin area.

customer.php & template.php These files are just classes which are used as

objects to store information. customer.php is

used to store information about the customer

and template.php is used to store information

about all the templates.

fileupload.php This file contains the code used to upload an

image selected by Andrew using information

about the images local location and name.

postoffice.php and postdelivery.php These two files contain the code use to prepare

and send the emails. postoffice is used to

prepare the email and postdelivery is used to

send it.

encryption.php This file does what it says on the tin. It contains

the encryption and decryption methods used to

encrypt and decrypt the admin password.

adminjava.js adminjava.js contains a lot of the javascript

needed for the admin area to function.

database.php database file contains all the SQL algorithms to

communicate with the database.

header.php (admin) This file is the inbetween for most of the files

used in the admin area. These files are

included through the header file which is called

by frontadmin.php. It also loads in the header

and the css and js files.

Index.php (front) index.php on the front end contains all the

forms needed for customers to sign up for the

newsletters.

encryptionkey.txt This text file is used to store the encryption key

that was used to encrypt the current cypher

text stored in the database.

Key Variables (Not all Variables)

Variable Name Description Type

 frontadmin.php

templates This is a store of all the templates that have been created and stored on the

database. Each one is assigned a key in a php array. An associative array would not

work because each template needs its own key value. Templates is an array of the

Template class instances which allows the storing of multiple values associated with

each template (content and subject).

Array of

Object

Instances

 Josiah Orange

19

newsletters This array variable stores all the newsletter names so they can be displayed in the

recipients popup and can be chosen by Andrew.

Array

recipientBox This is the JavaScript object for the popup box that shows when choosing the

recipients of the email that has been designed. Allows for the box to be visible or not.

JS Object

subject and

contents

these are temporary variables to store the contents and subject that has been

designed.

String

tempContent &

tempSubject

these variables store the template content and subject.

String

recipientInfo recipient info stores the factors determining who receives the email being sent. Array

images this dictionary array stores the image information (the image id and address) so it

can be embedded into the email.

Dictionary

Array

 header.php (admin)

details this variable stores the admin information retrieved from database that needs to be

typed into the login form to allow the user to access the admin area. Used to validate.

Array

 postdelivery.php

bodyContent

and subject

This the body and subject that has been prepared and is ready to be sent to the

specified users.

String

mail this variable an instance of the PHPMailer package allowing for the sending of the

email.

Object

Instance

customer this object variable stores the customer information.

Object

images this dictionary array contains all the necessary images info so PHPMailer can embed

the images.

Dictionary

Array

 postoffice.php

content and

subject and

name

these are the public properties of the Template Class. They store the associated

content, subject and name with the given template.

String

customers stores all the customer information of the emails that will receive the email being sent. array

sql The sql string that has been generated that will get all the customers information

required that will receive the email being sent.

string

recipientInfo This array stores all the recipient factors that will influence who recieves the email

being sent.

 template.php

email,

firstName,

lastName and

profession

These variables store the information associated with the customer object instance.

String

 customer.php

dbservername,

dbusernam,

dbpassword,

dbname:

these are constant global variables that store the information allowing for connection

to the database.

Constant

Strings

 database.php

sql this variable stores the sql statement that will be executed. It then stores the sql after

being prepared for execution.

String

 Josiah Orange

20

conn this variable stores the mysql connection, allowing for communication with the

database.

Object

Instance

result for select statements which result in the return of information, the result variable

holds this resulting data which is then distributed using loops.

Object

 encryption.php

firstname,

lastname,

email,

profession,

identifier

these are all javascript variables temporarily holding the information submitted by

clients.

encryption.php

String

cypherTxt The cypher text currently in process. String

plaintext The password in unencrypted form String

rndKey & key The key being used to encrypt or decrypt the password.

string

Regex Design

Regex strings can be used to validate a string to fit the desired format. This helps to create defensive programming and
helps prevent any SQL attacks. It also just allows for my consistency with inputs.

These are my Regular Expression designs.

Email Validation

^[a-z0-9]+@[a-z0-9]+(\.[a-z]+)+$

This regular expression allows for basic email validation. There must be either a string of lowercase letters or

numbers and then an @ symbol and then another string of lowercase letters and number and then the sequence of

dot and then lowercase string which can be repeated.

Name Validation

^[A-Z][a-z]*$

This a very simple regular expression that requires the first letter to be a capital letter and then the rest to be

lowercase letters

SQL Design

Get Templates

SELECT temName, temContent

FROM templates

Save Templates

mailto:+@[a-z0-9]+(/.%5ba-z%5d+)+$

 Josiah Orange

21

INSERT INTO (temName, temContent, temSubject)

VALUES (subject, content, subject)”

Get Admin Information

SELECT username, pass

FROM admins

Get Emails

SELECT customers.email, customers.firstName, customers.lastName, customers.profession

FROM customers

INNER JOIN subscription

ON customers.idCustomer = subscription.idCustomer

WHERE customers.email <> ''

AND

subscription.idNewsletter =

(SELECT idNewsletter

FROM newsletters

WHERE newsName = 'email list name')

AND

subscription.emailsOpened > 0

AND

customers.firstName LIKE '%firstname%'

OR customers.lastName LIKE '%lastname%'

Some Key Algorithms (Structured English + Pseudocode)

Some of the pseudocode used is mixed with some structured English – this is often used when language specific syntax
would be required.

Communicating with Database (SELECT Templates)

This algorithm is an example of a SELECT SQL statement. In this example, the template names and content are
being retrieved from the database.

conn = connect to database using username, servername, password and name.

if (error has occurred with during connection)

 print “connection failed”

sql = “SELECT temName, temContent FROM templates”

result = query using sql and conn

if (number of rows in result is more than 0)

 while (row = fetch next row from result)

 templates = push into array new Template(row[temName], row[temContent])

else

 print “no results”

close connection

 Josiah Orange

22

return templates.

Communicating with Database (INSERT Template)

This algorithm is an example of an INSERT SQL statement that inserts data into the database. In this example,
template name and content are being inserted into the database.

conn = connect to database using username, servername, password and name.

if (error has occurred with during connection)

 print “connection failed”

sql = “INSERT INTO (temName, temContent) VALUES (subject, content)”

if (the query was successful)

 print “New record created successfully”

else

 print “error has occurred”

close connection

Post Office Preparing Content for Email delivery

 If (post[subject] and post[content] from ajax call)

 content = MouldContents(post[content])

 PostDelivery.SendMail(content, post[subject])

Removing the attributes inside the generated html for website content to be

ready to be sent (function mouldContents)

This very simple algorithm stripes the construction box content of all the unnecessary elements and tags before it
is sent as email content.

MouldContents(content)

 content = stringreplace(*all attributes but style* with “”)

 return content

Generate SQL to get the Email Recipients (function generateRecipients)

This algorithm uses the factors Andrew has inputted to generate the appropriate SQL to get the emails that will
receive the email being sent.

generateRecipients(recipientInfo)

If (recipientInfo[0] == “”)

sql = "SELECT customers.email, customers.firstName, customers.lastName, customers.profession

FROM customers INNER JOIN subscription ON customers.idCustomer = subscription.idCustomer

WHERE customers.email <> ''"

if (recipientInfo[1] != “None”)

 sql = sql + “ AND ”

 sql = sql + "subscription.idNewsletter = (SELECT idNewsletter FROM newsletters WHERE

newsName = '" + recipientInfo[1] + "')"

 Josiah Orange

23

If (recipientInfo[2] == “true”)

 sql = sql + “ AND ”

 sql = sql + "subscription.emailsOpened < 1"

If (recipientInfo[3] != “”)

 sql = sql + “ AND ”

 sql = sql + "customers.firstName LIKE '%" + recipientInfo[3] + "%' OR customers.lastName LIKE '%"

+ recipientInfo[3] + "%'"

else

 sql = “SELECT email, firstName, lastName, profession FROM customers WHERE email LIKE '%" +

recipientInfo[0] + "%'”

return sql

Designing the Email – Nodes and drag and drop

function deletenode()

 remove targetnode html

function drag()

 set transfer data from dragging node

function insertafter(referenceNode, newNode)

 insert node after reference node

function drop()

 get transferdata from original node being copied

 if (node being dragged is already in construction box)

 if (target drop position doesn’t have any node attached)

 append node to target drop position

 else

 nodecopy = copy original node

 nodecopy2 = copy node currently inside target position

 parentnode1 = parent of original node

 parentnode2 = parent of node currently in target position

nodecontrols1 = a copy of the controls for the original node

 nodecontrols = a copy of the controls for the parent node currently in target position.

 empty the inner html for the parent elements to remove the nodes

 append nodecopy to parentnode2

 append nodecopy2 to parentnode1

 this swaps the nodes

 Else

 nodecopy = copy of original node

 counter = get counter from the html

 Josiah Orange

24

 increment the counter in the html

 add ‘customnode’ to the nodecopy

 if (the id of the original node is the image node)

 add counter to the id of nodecopy

 add counter to the id of the image element in nodecopy

 else

 add counter to the id of nodecopy

 if (the target drop position contains a node)

 append nodecopy to the drop position

 div = create div

 div inner html = '<div class="customnode" ondrop="drop(event)"

ondragover="allowDrop(event)"></div>'

 append div to construction box ready for a new node insertion

 divcontrol = create div

 id of divcontrol = ‘nodecontrol’ + counter

 class of divcontrol = ‘nodecontrol’

 nodecontrol inner html = ‘<button onclick="deletenode(event)">Delete</button>’

 insert the control div after the target drop position

Adding a new image to dictionary of images.

This algorithm processes the image just selected in the construction box. It gets the data required about the image
being uploaded as well, sends it off for uploading and adds it to the dictionary so it can be embedded once the
email is sent.

addImage(formId)

form = get form by formId

imgPath = get value of image upload

imgPaths = split image path by /

imgName = get final split from imgPaths array

Send Image upload form post information using ‘form’ to fileupload.php

change image src to new uploaded image src

imageId = “nodeImage” + formId

imageAddress = new address of uploaded image

images[] = images[] + [imageId => imageAddress]

 Josiah Orange

25

Encryption Algorithm

The encryption algorithm encrypts the password before It is stored in the database and stores the generated key
into a text file stored on the server. (or localhost).

length = length of plain text.

characters = !"#$%&\'()*+,-

./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~

for (i = 0 to length of plain text)

 rndKey = rndKey + random letter using characters

put rndKey into txt document

ascii = array

for (i = 0 to length of rndKey)

 ascii [i] = plaintext[1] as ascii + rndKey[i] as ascii

 while (ascii[i] > 126)

 ascii[i] = 33 + ascii[1] – 126

cypherTxt = ‘’

for (i = 0 to ascii length)

 cypherTxt = ascii[i] as char

return cypherTxt

Testing

Test Plan

----- Erroneous data ----- Normal data ----- Boundary data

Test

No.

Action Data Reason/Explanation Expected Result

1 Drag nodes over to

construction box and

swap around inside

construction box.

 Shows successfully

designing an Email

before the email is sent.

Nodes appear in construction box if

dragged over and when dragged over

one another can be swapped back

and forth. When a new node is added

to construction box, a new drop

position appears.

2 Browse for Image

and then select an

Image for upload

from local storage.

File: A png

Image

Successfully upload

Image which is

previewed in the

construction box

Image is uploaded into images folder

and then referenced inside the admin

area for a preview of the Image being

uploaded.

3 Enter the url into

browser that would

be followed if image

email =

‘testemail@t

est.com’

Successfully Record in

database when Email

Opened.

In customer table for the customer’s

to Main Email List row in the

database, the emailOpened attribute

mailto:testemail@test.com
mailto:testemail@test.com

 Josiah Orange

26

was loaded in email.

(Because localhost is

used to store

tracker.php, the

tracker file cannot be

referenced in email).

news =

‘Main’

Subject =

‘TestSubject

’

will be incremented which can then be

used as a factor.

4 Input factors into

form and then send

email.

Newsletter:

‘Lighting

Updates’

Successfully Send and

Receive Email using

recipient Factors.

The email(s) fitting the factors chosen

(part of the Lighting Updates

newsletter) will receive the email. The

prepared email signed up to Lighting

Updates will receive the email.

5 Input incorrect

recipient factors

before sending email.

Newsletter :

‘Main’

Send email to incorrect

factors so email is not

received.

Email is not received because they

are not part of the Main newsletter.

The email not received by prepared

email.

6 Input data into ‘Main

Email List’ sign up

form.

email =

‘testemail@t

est.com’

firstName =

‘Test’

lastName =

‘Name’

Successfully sign up to

Newsletters/ Email Lists

from the front end.

New customer is inserted into

database (customers table) and new

subscription inserted (subscription

table) connecting customer with the

Main Email List.

7 Enter incorrect data

into ‘Main Email List’.

email =

Testemail@t

est

firstName =

‘test’

lastName =

‘Name’

Fail to Sign Up for

Newsletter/Email list

from front end.

Error message warning user the

incorrect data has been entered and

the sign up has failed.

8 Sign up for a new

email list using

previously used email

on a different

newsletter

(Recommended

Products)

email =

‘testemail@t

est.com’

firstName =

‘Test’

lastName =

‘Name’

Newsletter =

Recommend

ed Products

Successfully sign up for

another new email list

using same email

without the same

customer being inserted

into database twice.

Connection between previously

inserted customer and new Lighting

Updates is created but customer table

not changed

9 Enter a template

name before saving

template. (with

content and subject

entered)

templateNa

me = ‘Test

Template’

content and

subject =

any input

Successfully Save a

custom template.

New template inserted into database

(template table) and when page is

refreshed, template comes up for

selection.

10 Enter a template

name and subject but

do not enter any

templateNa

me and

subject =

Fail to Save a custom

template.

Error message comes up saying that

no all contents has been entered.

mailto:testemail@test.com
mailto:testemail@test.com
mailto:Testemail@test.com
mailto:Testemail@test.com
mailto:testemail@test.com
mailto:testemail@test.com

 Josiah Orange

27

content and then

save template.

‘Template

Fail

content = no

input

11 Enter correct admin

login information

username =

‘username’

password =

‘password’

Successfully Login to

Admin area.

Redirected into the admin area.

12 Enter incorrect admin

login information.

username =

‘username’

password =

‘wrongpass

word’

Fail to login to admin

area.

Warning message showed and remain

on login page.

13 Enter URL to admin

area

(localhost::33066/ad

min/frontadmin.php)

‘localhost::3

3066/admin/

frontadmin.p

hp’ into

browser

Denied from admin files

and admin area If not

logged in.

User redirected to the admin login

page.

14 Browse for non-

Image and then

upload.

File: A word

document.

Uploading incorrect

input for image

The file is not uploaded and nothing is

previewed in admin.

15 Enter URL to admin

area

(localhost::33066/ad

min/)

‘localhost::3

3066/admin/

)’ into

browser

Automatically taken to

admin area if already

logged in and

attempting to go to login

page.

User directed to the frontadmin.php

admin area user interface.

16 Send Email with

Image and text and

subject to Gmail and

Outlook.

Subject

input, Image

and text in

contents.

Emails can be sent to a

variety of mail services

specifically, Gmail and

Outlook.

All will receive the email with the

correct styling and the Image loads.

Testing Video & Results

https://youtu.be/S--ccbK2nd4

----- As Expected ----- Not Entirely Expected ----- Not expected

Test

No.

Actual Result

1 Success. The nodes can be dragged and dropped, swapped and deleted. A drop position is created

when a new node is dropped in.

Occasionally buggy such as certain parts of the node wont react when node dropped on.

[3:30]

2 Success. The Image is uploaded into image folder and then previewed in admin area.

https://youtu.be/S--ccbK2nd4

 Josiah Orange

28

[4:58]

3 The emailOpened value is successfully incremented. Unfortunately this cannot be done through an

Image references both because of the tracker.php being hosted locally and some mail clients like

gmail blocking image src.

[6:21]

4 Successfully sends email according to the factor being signed up for lighting updates. Both the text

and Image is sent through to the email. The email that was signed up just previous into the lighting

updates form receives the email.

[3:55]

5 Email not received because the email is being sent to everyone signed up to the Main Email List and

the receiving email is not. Receiving email previously signed up in video.

[4:36]

6 Success. Customer successfully signs up for the Main Email List once all inputs are validated.

[0:14]

7 Error message sent to user telling them to input the correct value formats.

[0:00]

8 Successful. New subscription link is added but not a new repeated customer.

[0:36]

9 Successfully saved template which can then be selected and loaded into construction box.

[2:17]

10 Fails to save template. Warning pop up asking user to fill in all contents.

[2:01]

11 Successfully logs into admin area using the correct username and password (the password being

decrypted). Password is re encrypted.

[1:20]

12 Failed to log in. Error message shows at the top.

[1:04]

13 Successfully redirected back to admin login page.

[1:32]

 Josiah Orange

29

14 The word document selected is not uploaded and not previewed, nothing is previewed. However the

preview is attempted so the preview box flashes as it looks for the file uploaded – which it does not

find. No errors occur but it looks a bit strange.

[6:04]

15 Successfully redirected to admin area.

[1:50]

16 Emails were successfully received by Gmail and Outlook – as seen by these screen shots. The Image

and the text was displayed and with the correct styling.

Evaluation

I am happy with my technical solution and how it has turned out. I feel it has achieved almost all of the objectives I

set out to achieve. It is effective in having the ability to send to different mail clients, with or without HTML/CSS

capabilities. It can save and select templates, have an effective design system and has the ability to choose who

does or does not receive the email being sent. The admin area is simple and user friendly for Andrew who does not

have a problem navigating it.

Possible Improvements

 Josiah Orange

30

However, there are a few ways the program can be extended and improved. This is partially due to the openness

of the programs concept as well as the time limitations. These could be:

- A way to delete and modify templates that have previously been saved.

- A way to add and modify admin accounts from the admin area.

- A way to add and modify factors that can influence who receives the email being designed

- A way to add, remove and modify email lists.

- More extensive construction box capabilities and more nodes. E.g. the ability to changes the styling of the

nodes.

- The ability to choose both who will and will not receive the email.

- A preview of all emails that will receive the email depending on the factors currently selected.

An option to send test emails to Andrew’s own email before sending it off to all the recipients.

Most of these improvement could be made with some extra time and are not out of the realms of possibility. Not

many bugs have been found but the user interface could definitely be improved with extra and improved features.

Evaluation of Objectives

----- Objective met ----- Objective met somewhat ----- Objective not met

1: Andrew must have an admin area where he can manage his email system to perform tasks.
1.1: The admin area should only be reached through: websitename.com/admin.

[The user is redirected to websitename.com/admin when trying to reach any admin area files therefore the only

way of getting into the admin area is logging in through /admin/]

1.2: The admin area should only be reached through a login page.

[The user has to login through websitename.com/admin otherwise he is redirected to the /admin/ login page]

1.2.1: The admin area login must use a username and a password that only Andrew knows.

[The username and password chosen by Andrew is stored in the database (the password in encrypted form)

which is used to authenticate the login]

1.2.1: The password must be stored in an encrypted form in the database.

[The password is encrypted with the encryption key stored in a text file. The cyphertext is stored in the database]

1.2.2: If not logged in the browser will be redirected to the admin login page.

1.2.3: The username and password should be validated properly and there should be no way that anybody can

access any areas of the admin area without being in a logged in session.

[The username and password are authenticated and the password is encrypted every time Andrew logs in]

1.3: There must be the ability to log out from the admin area and the browser is redirected to the login page again.

[There is a log out button at the top of the admin area in the header so Andrew can log out of the admin area]

1.4: Andrew must be able to design emails to be sent to clients. There must be a simple, interactive user interface

in the admin area.

1.4.1: Andrew must be able to drag and drop elements into his central design and be able to edit these

elements/nodes to make the email customised and look as he desires.

[This objective has been met however the final design system could be extended and improved by adding the

ability to copy and paste nodes]

1.4.2: Elements/nodes of the design must be able to be shuffled around and rearranged.

[Nodes can be swapped, moved around by dragging them over each other]

1.4.3: Elements of the design must be able to be deleted and replaced.

[When a node is clicked, a delete button is displayed, allowing Andrew to delete the node. An empty drop position

is left behind which can be replaced]

1.4.4: The design nodes on the left must be labelled and easily understood as to their functionality so Andrew

easily know what to drag over to the design construction box.

 Josiah Orange

31

[They design nodes have titles and also have preview text to give Andrew an Idea of what it is he is dragging into

the construction box]

1.4.5: When these nodes are clicked the contents of the node should be able to be changed e.g. change text. The

outline should be changed to suggest to Andrew that the node is in edit mode. When in edit mode the node should

be able to be deleted. This should only be the case when dragged into construction box.

1.4.6: The emails that are sent must look good and be accessible in all web clients. Therefore, The program must

take into the fact that some clients handle email contents differently such as the handling of CSS or even HTML

tags. If the client does not accept the use of HTML, then remove the HTML tags and styling from the contents.

[This is done successfully through PHPMailer which allows for a different contents when HTML is not allowed]

1.5: Andrew must be able to specify which emails receive the email he has designed/is designing by using a variety

of factors.

1.5.1: Andrew must be able to choose what newsletter subscriptions receive the email.

1.5.2: He must also be able to use the name of the clients to decide who receives the emails.

1.5.3: Andrew must have the ability to only email clients if they haven’t or have opened an email before.

[This system is in place however it cannot work In its current state for a couple of reasons. While in development,

the system is on localhost and therefore the email recipients cannot reference the tracker.php file. Also, some

email clients block the ability to have img src specified e.g. Gmail.]

1.5.4: Andrew must also be able to send emails to specific email addresses if he desires.

[This is done through a factor where Andrew can enter an email or a part of an email which will send to all

matching emails]

1.6: Andrew must be able to save and utilise email templates to give him a head start in his designs.

1.6.1: Andrew must be able to save the current state of his design as a template which can be retrieved at a later

date.

[The template system works well. The contents and subject and template name is saved into the database and

can be selected and loaded back into the construction box at a later date]

1.6.1.1: A template name must be submitted before saving the template. There must be something inside the

templates content and there must be a subject entered.

[If any of these inputs are not satisfied, Andrew is alerted and the template is not saved]

1.6.2: Andrew must be able to select a template from a drop down.

[Andrew is given a drop down of all the templates which he can select and load in the admin area]

1.6.4: The current state of the email design will be lost therefore Andrew must be warned before the template is

loaded. [A pop up warning is shown as well as a warning that the page is being refreshed]

1.7: It should only take Andrew 5 minutes to get to grips with the user interface.

2: There must be forms in the front end of Andrew’s website that allows website visitors to sign up for his email
lists.
2.1: There will be 3 email lists that can be signed up for on the front end of Andrew’s website: Mail Email List,

Lighting Updates and Recommended Products

[3 forms are shown for 3 different email lists which can be individually signed up for]

2.1.1: All lists will require name and email however the Main Email List will also require the profession.

2.2: All inputs will require rigid validation. The email must be in email format, the names must start with a capital.

2.3:There must input spam protection for the forms.

[Forms are emptied once submitted to prevent accidental input spam and you cannot input the same email more

than once. However, spam is still possible]

2.4: The users must be notified if their information is processed successfully and whether the information is not

successfully processed. Notified if customer has signed up successfully, if Andrew has sent email successfully, if

template has been saved successfully, if not logged in successfully.

[Status text is used to notify users I they have completed something successfully or not successfully in all of these

instances]

3: All SQL must be secure and protected from security risks like SQL injection. All information must be easily and
quickly accessible from the database due to an efficient database design.
[A secure PHP communication with the database is used using SQL prepare syntax]

 Josiah Orange

32

3.1: It must be a fully normalised database preventing any inaccurate data.

4: Andrew must be able to have a send email button which will then display ‘sending…’ until all the emails have

been sent which then will display ‘sent’.

5: When an email is opened the database must be updated so that it knows that the email has been opened by the

customer.

[This system only partially works. An image with src is removed by a lot of mail clients like Gmail and tracker.php is

stored locally during development and therefore the tracking does not work faultlessly. However the image src can

be placed into a browser and the value is incremented in the database as it would do if the system worked in its

entirety]

Should be included:
1: When the user makes a big change, they should be notified which they then have to confirm their choices.

1.1: This includes when a template is deleted, when the page is refreshed, when pressing send email, when

selecting a template.

[Users are asked to confirm their choices with a pop up confirmation box in all these instances]

3: Clients should be able to sign up for multiple newsletters simultaneously without causing any problems inside the

program and in the database. The client should be able to sign up through different forms in the front end of the

website.

[Users are able to sign up for all the email lists simultaneously without a problem. There are no repeated customer

emails]

4: Clients should not be able to input their email more than once in the same email list which would spark an error

message.

[Clients cannot input their email more than once however it does not spark an error, only prevents the sql input]

5: It should only take Andrew 5-10 minutes to fully grasp the user interface.

6: Andrew should be able to delete templates he has previously saved.

[This has not been implemented purely because of time constraints]

7: Andrew’s emails should be able to be sent to all browsers and look good on all browsers, specifically Gmail,

Outlook and Apple Mail.

Could be included:
1: There could be the ability to manually add and or remove someone to the email list through the admin area. This

should be a separate part of the admin area. This should be done through another simple user interface.

[There is no ability to manually add or remove emails from the admin area purely because of time constraints]

2: The clients could opt in and opt out of email list and email sending from the front end as well as from the emails

being sent. This could be a link at the bottom of the emails being sent out as well as an option on the front page of

the website (in the footer).

[There is no ability to opt out of an email list, partially because of time constraints and partially because code to do

so could not be referenced from an email while the program in local]

Andrew’s Evaluation and Comments
(Written by Andrew Orange – The Client)

Extensions:

Label Content placeholders for usability advice and more labels and descriptions around the admin area.

Saving email during construction to build the email over a few days.

 Josiah Orange

33

Preview summary of email - which list has been selected, how many emails are being sent from the batch, what the

email will look like.

Test email easy to send off during the creation process to see how it is received on multiple platforms - desktop,

tablet, phone etc.

Positives:

Drag & drop system is easy to use.

Template creation and selection easy and useful.

Very quick and efficient sending.

A great start to an essential system for any sales orientated business.

Snags:

On screen preview whilst creating an email - even if the construction is very close to the real email that would be

sufficient ie. widths of images, content style of mixed image and text.

‘Enter Text Here’ placeholder should disappear after clicking into placeholder

moving content placeholders within construction can leave a blank space that is confusing

Text WISIWYG missing - rich html content required - bold text, hyperlinking especially. Being able to make smaller

changes in the nodes.

Technical Solution:

Key Parts of the Technical Solution

These are some of the techniques and features that have been used throughout the technical solution. They link to

one of the files that contain the feature specified.

Arrays and dictionary

Encryption

Both selection and iteration (if else, for, foreach, while, switch case)

Communicating with a database (SQL) Cross Table SQL.

Namespaces

Ajax

PHP Objects

PHP Class Objects.

 Josiah Orange

34

Constant Variables

Private and Public Variables (get and set)

PHP sessions.

PHP include/require

Reading and Writing to a text file

Files and File Upload

Regex

PHP POST

File organisation.

Exception Handling

User input validation – defensive programming.

Call by Reference

Any Notable Research References

(w3Schools, PHP File Upload, n.d.) : https://www.w3schools.com/php/php_file_upload.asp

(w3Schools, How TO - CSS/JS Modal, n.d.) : https://www.w3schools.com/howto/howto_css_modals.asp

https://www.w3schools.com/php/php_file_upload.asp
https://www.w3schools.com/howto/howto_css_modals.asp

 Josiah Orange

35

File Structure

The left Image shows the file system that allows for grouping of
subroutines and classes as well as allowing for direct access to files. The
admin files being stored in a separate admin folder means the user has to
type /admin/ into the url to reach index.php inside the admin folder.
Fonts, Images and scripts are all stored in their own separate folders.
encryptionkey.txt is stored besides the encryption.php file for direct
access.

You can also see the Composer PHPMailer files and the installed Composer
Depency Manager.

 Josiah Orange

36

frontadmin.php (admin)

<?php namespace admin;

include 'header.php';

use Database;

use \admin\Template;

$templates = array();

Database::collectTemplates($templates); //collecting templates and their info using call by reference

$newsletters = array();

Database::collectNewsletters($newsletters); ?> //collecting newsletters and their info using call by reference

<!-- ///// Nodes to be dragged into the contruction box ////// -->

<div id="builder-wrapper">

 <div id="builder-left">

 <h2 class="node-title">Title</h2>

 <div class="draggable" id="drag1" draggable="true" ondrop="nodrop(event)" ondragstart="drag(event)">

 <h1 contenteditable="true">Enter Title Here</h1>

 </div>

 <div class="overlay"></div>

 <h2 class="node-title" >Text</h2>

 <div class="draggable" id="drag2" draggable="true" ondrop="nodrop(event)" ondragstart="drag(event)">

 <p contenteditable="true">Enter Text Here.</p>

 </div>

 <h2 class="node-title">Space</h2>

 <div class="draggable" id="drag3" draggable="true" ondrop="nodrop(event)" ondragstart="drag(event)">

 <div class="space-node" contenteditable="false" style="padding:20px;"></div>

 </div>

 <h2 class="node-title" >Image</h2>

 <div class="draggable" id="drag4" draggable="true" ondrop="nodrop(event)" ondragstart="drag(event)">

 <h4>Select Image:</h4>

 <form id="image-upload-form" enctype="multipart/form-data" method="post">

 <input id="image-info" name="image-info" type="file" onchange="document.getElementById('node-

image').src = window.URL.createObjectURL(this.files[0]);addImage(-1)"/>

 </form>

 </div>

 </div>

 <div id="builder-right">

 <form style="width:100%;" action="">

 <input placeholder="Email Subject" id="email-subject" type="text">

 </form>

 <!-- ///// Construction Box Controls ////// -->

 <div id="construction-controls">

 <div class="icmulti ic-node">

 <!-- Choosing Template -->

 <form id="tem-form" method="POST" action="<?=$_SERVER['PHP_SELF'];?>">

 Josiah Orange

37

 <select name="template" id="template-choose">

 <?php

 for ($x = 0; $x <= sizeof($templates) - 1; $x++) {

 echo '<option value="' . $templates[$x]->name . '">' . $templates[$x]->name . '</option>';

 }

 ?>

 </select>

 </form>

 <input onclick="return confirm('Selecting Template will remove everything currently in construction box!')" form="

tem-form" value="Select Template" type="submit">

 </div>

 <!-- Saving new template -->

 <div id="space-right" class="icmulti ic-node">

 <input placeholder="Template Name" id="template-name"type="text">

 <input onclick="if(confirm('Save current Email Contents and Subject as Template?'))saveTemplate()" value="Save as

Template" type="button">

 <p style="color:green;" id="save-status"></p>

 </div>

 <!-- Choose Recipients (open popup) -->

 <div class="ic-node">

 <input onlick="openRecipient()" id="open-recipient" type="button" value="Choose Recipients">

 </div>

 <!-- Send Email Button -->

 <div class="ic-node">

 <input onclick="if(confirm('Send Email? This will be sent to all matching emails!')) sendEmail();" value="Send Ema

il" type="button">

 <p id="email-status"></p>

 </div>

 </div>

 <input id="counter" style="display:none;" value="0" type="text">

 <!-- ///// Construction Box ////// -->

 <div id="construction-box">

 <div id="drop-position">

 <div class="custom-node" ondrop="drop(event)" ondragover="allowDrop(event)"></div>

 </div>

 </div>

 </div>

</div>

<!--------------------Pop Up Box--------------------->

<div id="recipient" class="pop-up">

 <!-- Choosing the Recipients Pop Up -->

 <div class="recipient-wrapper">

 ×

 <form action="">

 <h1>Find Recipients</h1>

 <h2>Specify an Email:</h2>

 <p>Email contains:</p>

 <input id="recemail" type="text">

 <h2>Or choose Parameters:</h2>

 Josiah Orange

38

 <p>Newsletter:</p>

 <!-- Choose Newsletter as factor -->

 <select id="rec-news">

 <option value="None">None</option>

 <?php

 for ($x = 0; $x <= sizeof($newsletters) - 1; $x++) {

 echo '<option value="' . $newsletters[$x] . '">' . $newsletters[$x] . '</option>';

 }

 ?>

 </select>

 <p>Hasn't opened an email before:</p>

 <input id="rec-check" type="checkbox">

 <p>Name contains:</p>

 <input id="rec-name" type="text">

 </form>

 </div>

</div>

<!--------------------- SCRIPTS ------------------------->

<?php

if(isset($_POST['template'])) {

 //fill in construction box with chosen template. Getting the content ready to pass through javascript

 $tempContent = "";

 $tempSubject = "";

 for ($x = 0; $x <= sizeof($templates) - 1; $x++) {

 if($templates[$x]->name == $_POST['template']){

 $tempContent = $templates[$x]->content;

 $tempSubject = $templates[$x]->subject;

 $tempContent = str_replace("'", "\\'", $tempContent);

 $tempContent = str_replace('"', '\\"', $tempContent);

 $tempContent = str_replace(array("\n","\r","\r\n"),'', $tempContent);

 }

 }

 echo '<script>fillInTemplate("' . $tempContent . '", "' . $tempSubject . '")</script>';

} ?>

<script>

function sendEmail() //ajax for sending an email.

{

 document.getElementById("email-status").innerHTML= "Sending...";

 for (const [imageId, imageAddress] of Object.entries(images)) { //temporarily change the sizing of the images in the con

struction box before being sent as content

 document.getElementById(imageId).src = "cid:" + imageId;

 document.getElementById(imageId).width = "400";

 }

 //sending the email ajax. Passing the subject, content and the chosen recipient factors.

 jQuery(function($) {

 var subject = ""; //stores email subject

 var contents = ""; //stores email content

 subject = document.getElementById("email-subject").value; //get subject

 contents = document.getElementById("construction-box").innerHTML; //get content

 Josiah Orange

39

 if(subject && contents){

 $.ajax

 ({

 type:'post',

 url:'postoffice.php',

 data:

 {

 _subject:subject,

 _contents:contents,

 _recipientInfo:recipientInfo, //sending recipient variables

 _images:images, //sending image information

 },

 success: function (response)

 {

 document.getElementById("email-status").innerHTML= "Sent!";

 }

 });

 }

 else{

 document.getElementById("email-status").innerHTML= "";

 alert("Fill in Required");

 }

 for (const [imageId, imageAddress] of Object.entries(images)) { //revert image sizing

 document.getElementById(imageId).width = "100";

 }

 return false;

 })

}

images = {}; // images variable will store the emails embedded image information. Passed through sendEmail ajax.

function addImage(uploadFormId){ //uploadFormId is the id to identify location of image being added in the email content.

 if (uploadFormId != -1){ //If the image is in content construction box, Get image information.

 var form = document.getElementById("image-upload-form" + uploadFormId);

 var imgNamePath = document.getElementById("image-info" + uploadFormId).value;

 }

 else {

 var form = document.getElementById("image-upload-form");

 var imgNamePath = document.getElementById("image-info").value;

 }

 //get image file name from the path.

 imgNamePaths = imgNamePath.split('\\');

 imgName = imgNamePaths[imgNamePaths.length - 1]

 jQuery(function($) {

 $.ajax({

 url: 'fileupload.php',

 type: 'POST',

 data: new FormData(form), //send the form post data from specific image submittion form.

 processData: false,

 contentType: false,

 success: function (response){},

 error: function (request, error)

 {

 },

 });

 return false;

 });

 if (uploadFormId != -1){ //change the src of image in contents to the new src of uploaded image.

 Josiah Orange

40

 document.getElementById("node-image" + uploadFormId).src = "http://localhost:33066/admin/images/" + imgName;

 }

 else{

 document.getElementById("node-image").src = "http://localhost:33066/admin/images/" + imgName;

 }

 //

 var imageId = "node-image" + uploadFormId;

 var imageAddress = "images/" + imgName;

 var tempImage = { [imageId] : imageAddress, };

 images = Object.assign(images, tempImage); //image information added to images variable.

}

function saveTemplate()

{

 //ajax for saving a new template. This passes the content, subject and the chosen template name.

 jQuery(function($) {

 var subject = "";

 var contents = "";

 subject = document.getElementById("email-subject").value;

 contents = document.getElementById("construction-box").innerHTML;

 temName = document.getElementById("template-name").value;

 //prevents any string escapes.

 contents = contents.replace(/'s/g, "\\'");

 subject = subject.replace(/'/g, "\\'");

 temName = temName.replace(/'/g, "\\'");

 contents = contents.replace(/"/g, '\\"');

 subject = subject.replace(/"/g, '\\"');

 temName = temName.replace(/"/g, '\\"');

 if(subject && contents && temName && contents.includes("nodecontrol")){

 $.ajax

 ({

 type:'post',

 url:'../database.php',

 data:

 {

 _subject:subject,

 _contents:contents,

 _temName:temName,

 },

 success: function (response)

 {

 }

 });

 document.getElementById("save-status").innerHTML= "Template Saved";

 }

 else{

 alert("Error: Fill in all Contents");

 }

 return false;

 });

}

var recipientInfo = ["", "", "", ""]; //variable storing the recipient information that will be sent through sendEmail fu

nction.

function saveRecipient(){

 //saves the recipient factor information into a variable accessable by the whole php file.

 recNews = document.getElementById("rec-news").value;

 Josiah Orange

41

 recCheck = document.getElementById("rec-check").checked;

 recName = document.getElementById("rec-name").value;

 recEmail = document.getElementById("recemail").value;

 recipientInfo[0] = recNews;

 recipientInfo[1] = recCheck;

 recipientInfo[2] = recName;

 recipientInfo[3] = recEmail;

}

//functions for opening and closing the popup box

var recipientBox = document.getElementById("recipient");

document.getElementsByClassName("close")[0].onclick = function() {

 recipientBox.style.display = "none";

 saveRecipient();

}

document.getElementById("open-recipient").onclick = function() {

 recipientBox.style.display = "block";

}

document.getElementById("open-recipient").onclick = function() {

 recipientBox.style.display = "block";

}

window.onclick = function(event) {

 if (event.target == recipientBox) {

 recipientBox.style.display = "none";

 saveRecipient();

 }

}

</script>

postoffice.php (admin)

<?php namespace admin;

include 'postdelivery.php';

include 'customer.php';

//for testing

if (!class_exists('Database')){ //only include database if not already included. (for testing mainly)

 include '../database.php';

}

use \admin\Customer;

use Database;

use \admin\PostDelivery;

$images = []; //images variable which will take in the images variable from ajax call.

if(isset($_POST['_contents']))

{

 //preparing to send the email. Mould the email content removing all the information associated with the admin area.

 $content = PostOffice::mouldContents($_POST['_contents']);

 $sql = PostOffice::generateEmailRecipients($_POST['_recipientInfo']);

 $images = $_POST['_images'];

 $customers = array();

 Database::getEmails($sql, $customers);

 foreach ($images as $imageId => $imageAddress){

 Josiah Orange

42

 $txt = $images[$imageId];

 }

 //send the emails to all the recipients.

 for ($x = 0; $x <= count($customers); $x++) {

 PostDelivery::sendMail($content, $_POST['_subject'], $customers[$x], $images,$_POST['_recipientInfo'][0]);

 }

}

class PostOffice{

 static function mouldContents($content){

 $content = preg_replace('/class=".*?"/', '', $content);

 $content = preg_replace('/id=".*?"/', '', $content);

 $content = preg_replace('/ondrop=".*?"/', '', $content);

 $content = preg_replace('/ondragover=".*?"/', '', $content);

 $content = preg_replace('/ondragstart=".*?"/', '', $content);

 $content = preg_replace('/draggable=".*?"/', '', $content);

 $content = preg_replace('/<button>.*?<\/button>/', '', $content);

 $content = preg_replace('/contenteditable=".*?"/', '', $content);

 $content = preg_replace('/border:.*?/', 'border:nonexj', $content);

 $content = preg_replace('/<form.*?>.*?<\/form>/', '', $content);

 $content = preg_replace('/<h4>.*?<\/h4>/', '', $content);

 return $content;

 }

 // generates the sql to get all the desires recipients depending on the factors inputted by the user (Andrew).

 static function generateEmailRecipients($recipientInfo){

 if($recipientInfo[3] == ""){

 $sql = "SELECT customers.email, customers.firstName, customers.lastName, customers.profession FROM customers INNER

 JOIN subscription ON customers.idCustomer = subscription.idCustomer WHERE customers.email <> ''";

 if ($recipientInfo[0] != "None"){

 $sql = $sql . " AND ";

 $sql = $sql . "subscription.idNewsletter = (SELECT idNewsletter FROM newsletters WHERE newsName = '" . $recipien

tInfo[0] . "')";

 }

 if ($recipientInfo[1] == "true"){

 $sql = $sql . " AND ";

 $sql = $sql . "subscription.emailsOpened = NULL";

 }

 if ($recipientInfo[2] != ""){

 $sql = $sql . " AND ";

 $sql = $sql . "customers.firstName LIKE '%" . $recipientInfo[2] . "%' OR customers.lastName LIKE '%".$recipientI

nfo[2]."%'";

 }

 }

 else{

 $sql = "SELECT email, firstName, lastName, profession FROM customers WHERE email LIKE '%" . $recipientInfo[3] . "%

'";

 }

 return $sql;

 }

}

postdelivery.php (admin)

<?php namespace admin;

// use the classes from the PHPMailer plugin.

use PHPMailer\PHPMailer\PHPMailer;

 Josiah Orange

43

use PHPMailer\PHPMailer\SMTP;

use PHPMailer\PHPMailer\Exception;

class PostDelivery{

 //--------- Send Email using the passed recipient information. ----------//

 static function sendMail($bodyContent, $subject, $customer, $images, $newsName) {

 $bodyContent = "Hi " . $customer->firstName . $customer->lastName . "!" . $bodyContent;

 // Import PHPMailer classes into the global namespace

 // Load Composer's autoloader

 require 'vendor/autoload.php';

 // Instantiation and passing `true` enables exceptions

 $mail = new PHPMailer(true);

 try {

 //Server settings

 $mail->SMTPDebug = SMTP::DEBUG_SERVER; // Enable debug

 $mail->isSMTP(); // Send using SMTP

 $mail->Host = 'smtp.gmail.com'; // Set the SMTP server to send through

 $mail->SMTPAuth = true; // Enable SMTP authentication

 $mail->Username = '[GMAIL EMAIL]'; // set SMTP username

 $mail->Password = '[SMTP PASSWORD]'; // set SMTP password

 $mail->SMTPSecure = PHPMailer::ENCRYPTION_STARTTLS; // Enable encryption

 $mail->Port = 587; // TCP port to connect to

 //Recipients

 $mail->setFrom('[ANDREWS EMAIL]', 'Andrew');

 $mail->addAddress($customer->email, $customer->firstName); // recipient

 $mail->addReplyTo('[ANDREWS EMAIL]', 'Andrew');

 $tracker = '<img id="tracker" style="width:100px;height:100px;" src="http://localhost:33066/tracker.php?log=tr

ue&subject=' . $subject . '&user=' . $customer->email .'&news=' . $newsName .'">';

 $bodyContent = $bodyContent . $tracker;

 foreach ($images as $imageId => $imageAddress){

 $mail-

>AddEmbeddedImage($imageAddress, $imageId, $imageAddress); // attach file logo.jpg, and later link to it using identfier l

ogoimg

 }

 // Content

 $mail->isHTML(true); // Set email format to HTML

 $mail->Subject = $subject;

 $mail->Body = $bodyContent;

 $mail->AltBody = strip_tags($bodyContent); //if html support not allowed then remove tags

 $mail->send();

 } catch (Exception $e) {

 echo "Message could not be sent. Mailer Error: {$mail->ErrorInfo}";

 }

 }

}

index.php (admin)

<?php namespace admin;

include '../database.php';

include 'encryption.php';

use \admin\Encryption;

use Database;

session_start(); //session for login information.

//--------------- Login Page ---------------//

 Josiah Orange

44

$details = Database::collectAdmin();

$details[1] = Encryption::decrypt(strval($details[1]));

$detUser = strval($details[0]);

$detPass = strval($details[1]);

if(isset($_SESSION["password"])&& isset($_SESSION["username"])) //if already logged in send to admin area

{

 if($_SESSION["password"] == $details[1] && $_SESSION["username"] = $details[0]){

 header('Location: http://' . $_SERVER['SERVER_NAME'] . ':' . $_SERVER['SERVER_PORT'] . '/admin/frontadmin.php');

 exit();

 }

}

if($_SERVER['REQUEST_METHOD']=='POST') //if trying to log in.

{

 $_SESSION["username"] = $_POST['username'];

 $_SESSION["password"] = $_POST['password'];

 $details = Database::collectAdmin(); //get admin info from database then decrypt it.

 $details[1] = Encryption::decrypt($details[1]);

 if($_SESSION["password"] == $details[1] && $_SESSION["username"] == $details[0]){

 echo "correct!";

 $cypherTxt = Encryption::encrypt($_SESSION["password"]);

 Database::updateAdmin($cypherTxt, $_SESSION["username"]);

 header('Location: http://' . $_SERVER['SERVER_NAME'] . ':' . $_SERVER['SERVER_PORT'] . '/admin/frontadmin.php');

 exit();

 }

 else {

 echo '<p style="padding:20px;color:red">Incorrect Login Info - Try again!</p>';

 }

}

?>

<link rel="stylesheet" href="scripts/adminstyle.css">

<div id="login-area">

 <h1>Login to Admin</h1>

 <form method="post" action="<?=$_SERVER['PHP_SELF'];?>">

 <label for="">username</label>

 <input name="username" type="text">

 <label for="">password</label>

 <input name="password" type="text">

 <input type="submit" value="click">

 </form>

</div>

header.php (admin)

<?php namespace admin;?>

<!DOCTYPE html>

<html>

 <head> <!-- enqueuing js and css files as well as jquery capabilities-->

 <link rel="stylesheet" href="scripts/adminstyle.css">

 <script src="scripts/adminjava.js"></script>

 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>

<?php session_start(); //starts session allowing for the storing of login information.

include 'template.php'; //including all necessary php files. Header acts as in between for functionailty.

include '../database.php';

include 'postoffice.php';

 Josiah Orange

45

include 'encryption.php';

use \admin\Encryption;

use Database;

if (isset($_POST['logOut'])){

 $_SESSION["password"] = "";

 $_SESSION["username"] = "";

 header("Refresh:0");

}

//--------------- Check if the user is logged in or not -------------------//

$details = Database::collectAdmin();

$details[1] = Encryption::decrypt($details[1]);

$detUser = strval($details[0]);

$detPass = strval($details[1]);

if(isset($_SESSION["password"])&& isset($_SESSION["username"]))

{

 //if not logged in then sent to the login page.

 if($_SESSION["password"] == $details[1] && $_SESSION["username"] = $details[0]){

 }

 else{

 header('Location: http://' . $_SERVER['SERVER_NAME'] . ':' . $_SERVER['SERVER_PORT'] . '/admin');

 exit();

 }

}

else{

 header('Location: http://' . $_SERVER['SERVER_NAME'] . ':' . $_SERVER['SERVER_PORT'] . '/admin');

 exit();

}

?>

 <header>

 <h1>Admin Area</h1>

 <form method="POST">

 <input onclick="return confirm('Log out of Admin Area?')" value="Log Out" name="logOut" id="logOut" type="submit">

</input>

 </form>

 </header>

 </head>

fileupload.php (admin)
<?php

// Check if image file is a actual image or fake image

if(isset($_FILES["image-info"])) {

 FileUpload::uploadImage();

}

class FileUpload{

 static function uploadImage(){

 $target_dir = "images/";

 $target_file = $target_dir . basename($_FILES["image-info"]["name"]);

 $canUpload = true;

 $imageFileType = strtolower(pathinfo($target_file,PATHINFO_EXTENSION));

 // Check if the file is actually an image

 $check = getimagesize($_FILES["image-info"]["tmp_name"]);

 Josiah Orange

46

 if($check !== false) {

 $canUpload = true;

 } else {

 $canUpload = false;

 }

 // Check if file already exists

 if (file_exists($target_file)) {

 $canUpload = false;

 }

 // Check file size

 if ($_FILES["image-info"]["size"] > 2000000) {

 $canUpload = false;

 }

 // Allow certain image formats

 if($imageFileType != "jpg" && $imageFileType != "png" && $imageFileType != "jpeg" && $imageFileType != "gif") {

 $canUpload = false;

 }

 // is the image able to be uploaded?

 if ($canUpload == true) {

 // upload file

 (move_uploaded_file($_FILES["image-info"]["tmp_name"], $target_file));

 }

}

}

tracker.php (admin)

<?php namespace admin;

include 'database.php';

use Database;

if(!empty($_GET['log']) && $_GET['log'] == 'true' && !empty($_GET['user']) && !empty($_GET['subject'])){

 Database::emailOpened($_GET['user'], $_GET['news']);

}

template.php (admin)
<?php namespace admin;

//storing all the templates and their information.

class Template {

 private string $content; //stores the email content that will be stored and retrieved from database.

 private string $subject; //stores the subject for the template

 private string $name; //stores the template name

 function __construct(string $name, string $cont, string $sub) {

 $this->content = $cont;

 $this->subject = $sub;

 $this->name = $name;

 }

 // PHPs version of Get Set.

 function getName(){

 return $this->name;

 Josiah Orange

47

 }

 function getSubject(){

 return $this->subject;

 }

 function getContent(){

 return $this->content;

 }

 function setContent($value){

 $this->content = $value;

 }

 function setName($value){

 $this->name = $value;

 }

 function setSubject($value){

 $this->subject = $value;

 }

 public function __set($ID,$value) {

 switch($ID) {

 case 'name':

 return $this->setName($value);

 case 'subject':

 return $this->setSubject($value);

 case 'content':

 return $this->setContent($value);

 }

 }

 public function __get($ID) {

 switch($ID) {

 case 'name':

 return $this->getName();

 case 'subject':

 return $this->getSubject();

 case 'content':

 return $this->getContent();

 }

 }

}

customer.php (admin)

<?php namespace admin;

//stores each customer and their information (each email sign up) that will be sent an email

class Customer {

 private string $email; //customers email

 private string $firstName; //customers first name

 private string $lastName; //customers last name

 private string $profession; //customer profession (if applicable)

 function __construct(string $email, string $firstName, string $lastName, string $profession) {

 $this->email = $email;

 $this->firstName = $firstName;

 $this->lastName = $lastName;

 $this->profession= $profession;

 }

 Josiah Orange

48

 // PHPs version of Get Set.

 function getEmail(){

 return $this->email;

 }

 function getFirstName(){

 return $this->firstName;

 }

 function getLastName(){

 return $this->lastName;

 }

 function getProfession(){

 return $this->profession;

 }

 function setLastName($value){

 $this->lastName = $value;

 }

 function setEmail($value){

 $this->email = $value;

 }

 function setFirstName($value){

 $this->firstName = $value;

 }

 function setProfession($value){

 $this->profession = $value;

 }

 public function __set($ID,$value) {

 switch($ID) {

 case 'email':

 return $this->setEmail($value);

 case 'firstName':

 return $this->setFirstName($value);

 case 'lastName':

 return $this->setLastName($value);

 case 'profession':

 return $this->setProfession($value);

 }

 }

 public function __get($ID) {

 switch($ID) {

 case 'email':

 return $this->getEmail();

 case 'firstName':

 return $this->getFirstName();

 case 'lastName':

 return $this->getLastName();

 case 'profession':

 return $this->getProfession();

 }

 }

}

database.php

<?php

use \admin\Template;

use \admin\Customer;

// constants for database information.

define("dbServerName", "localhost");

 Josiah Orange

49

define("dbUsername", "root");

define("dbPassword", "local336236!");

define("dbName", "emailsystemdb");

if(isset($_POST['_temName']))

{

 Database::saveTemplate();

}

?>

<?php

if(isset($_POST['_firstName']))

{

 if(isset($_POST['_identifier']) == "1"){

 Database::signUp();

 }

 if(isset($_POST['_identifier']) == "2"){

 Database::signUp();

 }

}

class Database{

 //Signing up to a newsletter

 static function signUp() {

 // Create connection

 $conn1 = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn1->connect_error) {

 die("Connection failed: " . $conn1->connect_error);

 }

 //SQL string

 $sql = "SELECT email from customers WHERE email='" . $_POST['_email'] . "'"; //Find if email already entered into data

base

 $sql = $conn1->prepare($sql);

 $sql->execute();

 $result = $sql->get_result(); //Recieve Results from SQL query

 if (!empty($result) && $result->num_rows > 0) { //If email already exists in the database.

 // Create connection

 $conn2 = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn2->connect_error) {

 die("Connection failed: " . $conn2->connect_error);

 }

 //SQL string

 $sql = "SELECT idSub

 FROM subscription

 WHERE idCustomer =

 (SELECT idCustomer

 FROM customers

 WHERE email = '" . $_POST['_email'] . "') && idNewsletter =

 (SELECT idNewsletter

 FROM newsletters

 WHERE idNewsletter = '" . $_POST['_formId'] . "') ";

 //Recieve Results from SQL query

 $sql = $conn2->prepare($sql);

 $sql->execute();

 $result = $sql->get_result();

 if (!empty($result) && $result->num_rows > 0) {} //If email is already signed up for that newsletter - do nothing.

 else{ //If email exists but is not signed up for that newsletter / mail list then sign them up.

 // Create connection

 Josiah Orange

50

 $conn3 = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn3->connect_error) {

 die("Connection failed: " . $conn2->connect_error);

 }

 //SQL string

 $sql = "INSERT INTO subscription (idNewsletter, idCustomer)

 VALUES ((SELECT idNewsletter from newsletters WHERE idNewsletter=" . $_POST['_formId'] . "),(SELECT idCustomer fro

m customers WHERE email='" . $_POST['_email'] . "'))";

 $sql = $conn3->prepare($sql);

 if ($sql->execute()) {

 } else {

 }

 $conn3->close();

 //If customer does not yet have a profession assigned then assign them the profession they have selected.

 // Create connection

 $conn4 = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn4->connect_error) {

 die("Connection failed: " . $conn4->connect_error);

 }

 //SQL string

 $sql = "UPDATE customers

 SET profession = '" . $_POST['_profession'] . "'

 WHERE email = '" . $_POST['_email'] . "'

 AND profession = ''

 OR profession = NULL";

 $sql = $conn4->prepare($sql);

 $sql->execute();

 $conn4->close();

 }

 }

 else { //If email does not yet exist in database insert into customer table as well as sign them up for a newsletter /

 mail list.

 // Create connection

 $conn2 = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn2->connect_error) {

 die("Connection failed: " . $conn2->connect_error);

 }

 //SQL string

 $sql = "INSERT INTO customers (firstName, lastName, email, profession)

 VALUES ('" . $_POST['_firstName'] . "', '" . $_POST['_lastName'] . "', '" . $_POST['_email'] . "', '" . $_POST['_pro

fession'] . "')";

 $sql = $conn2->prepare($sql);

 $sql->execute();

 $conn2->close();

 // Create connection

 $conn3 = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn3->connect_error) {

 die("Connection failed: " . $conn2->connect_error);

 }

 //SQL string

 $sql = "INSERT INTO subscription (idNewsletter, idCustomer)

 VALUES (

 (SELECT idNewsletter

 FROM newsletters

 Josiah Orange

51

 WHERE idNewsletter=" . $_POST['_formId'] . "),(SELECT idCustomer from customers WHERE email='" . $_POST['_email']

. "'))";

 $sql = $conn3->prepare($sql);

 $sql->execute();

 $conn3->close();

 }

 $conn1->close();

 }

 //Gets admin information for login validation

 static function collectAdmin(){

 // Create connection

 $conn = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

 }

 //SQL string

 $sql = "SELECT username, pass

 FROM admins";

 //Recieve Results from SQL query

 $sql = $conn->prepare($sql);

 $sql->execute();

 $result = $sql->get_result();

 if ($result->num_rows > 0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 $details = array($row["username"], $row["pass"]);

 return $details;

 }

 } else {

 }

 $conn->close();

 }

 //Gets the templates available for loading.

 static function collectTemplates(&$templates){

 // Create connection

 $conn = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

 }

 //SQL string

 $sql = "SELECT temName, temContent, temSubject

 FROM templates";

 //Recieve Results from SQL query

 $sql = $conn->prepare($sql);

 $sql->execute();

 $result = $sql->get_result();

 if ($result->num_rows > 0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 array_push($templates, new Template($row["temName"], $row["temContent"], $row["temSubject"]));

 }

 } else {

 }

 Josiah Orange

52

 $conn->close();

 return $templates;

 }

 //Saves a new template into the database for use

 static function saveTemplate(){

 // Create connection

 $conn = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

 }

 //SQL string

 $sql = "INSERT INTO templates (temSubject, temContent, temName)

 VALUES ('" . $_POST['_subject'] . "', '" . $_POST['_contents'] . "', '" . $_POST['_temName'] . "')";

 $sql = $conn->prepare($sql);

 $sql->execute();

 $conn->close();

 }

 //upates the cypher text stored in the database.

 static function updateAdmin($encryptPass, $username){

 $encryptPass = str_replace ("'", "''", $encryptPass);

 // Create connection

 $conn = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

 }

 //SQL string

 $sql = "UPDATE admins

 SET pass = '" . $encryptPass . "'

 WHERE username = '" . $username . "' ";

 $sql = $conn->prepare($sql);

 $sql->execute();

 $conn->close();

 }

 //Checks if an email has previously been opened by a customer

 static function emailOpened($user, $news) {

 if ($news != ''){

 // Create connection

 $conn = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

 }

 //SQL string

 $sql = "UPDATE subscription

 SET emailsOpened=emailsOpened + 1

 WHERE idCustomer=

 (SELECT idCustomer

 FROM customers

 WHERE email= '" . $user . "')

 AND idNewsletter=

 Josiah Orange

53

 (SELECT idNewsletter

 FROM newsletters

 WHERE newsName= '" . $news . "')";

 $sql = $conn->prepare($sql);

 $sql->execute();

 $conn->close();

 }

 }

 //Gets all newsletters that are available for signup. (For the recipient choosing popup)

 static function collectNewsletters(&$newsletters){

 // Create connection

 $conn = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

 }

 //SQL string

 $sql = "SELECT newsName

 FROM newsletters";

 //Recieve Results from SQL query

 $sql = $conn->prepare($sql);

 $sql->execute();

 $result = $sql->get_result();

 if ($result->num_rows > 0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 array_push($newsletters, $row["newsName"]);

 }

 } else {

 }

 $conn->close();

 return $newsletters;

 }

 //Gets all recipients that match the factors chosen by andrew. (using the generated sql statement)

 static function getEmails($sql, &$customers){

 // Create connection

 $conn = new \mysqli(dbServerName, dbUsername, dbPassword, dbName);

 // Check connection

 if ($conn->connect_error) {

 die("Connection failed: " . $conn->connect_error);

 }

 $sql = $conn->prepare($sql);

 //Recieve Results from SQL query

 $sql->execute();

 $result = $sql->get_result();

 if (!empty($result) && $result->num_rows > 0) {

 // output data of each row

 while($row = $result->fetch_assoc()) {

 //saved as new customer instance

 array_push($customers, new Customer($row["email"], $row["firstName"], $row["lastName"], $row["profession"]));

 }

 } else {

 }

 $conn->close();

 return $customers;

 Josiah Orange

54

 }

}

header.php (front end)

<?php namespace frontend;

session_start();?>

<!DOCTYPE html>

<html>

 <head>

 <link rel="stylesheet" href="scripts/frontstyle.css">

 <script src="scripts/frontjava.js"></script>

 <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>

 <header>

 <h1>Front Page</h1>

 </header>

 </head>

index.php (front end)

<?php namespace frontend;

include 'header.php'; ?>

<script>

//ajax for the clients submition of a newsletter sign up (to be inserted in to database).

function clientSubmit(form)

{

 jQuery(function($) {

 var firstname = "";

 var lastname = "";

 var email = "";

 var profession = "";

 var identifier = "";

 var formId = "";

 firstName = document.getElementById("firstname" + form).value;

 lastName = document.getElementById("lastname" + form).value;

 email = document.getElementById("email" + form).value;

 identifier = document.getElementById("identifier"+ form).value;

 if (form == 1){

 profession = document.getElementById("profession" + form).value;

 }

 formId = document.getElementById("formid" + form).value;

 var validEmail = valEmail(email);

 var validName1 = valName(firstName);

 var validName2 = valName(lastName);

 if(firstName && validEmail && validName1 && validName2){

 $.ajax

 ({

 type:'post',

 url:'database.php',

 data:

 {

 _firstName:firstName,

 _lastName:lastName,

 _email:email,

 Josiah Orange

55

 _identifier:identifier,

 _formId:formId,

 _profession:profession,

 },

 success: function (response)

 {

 document.getElementById("status" + form).style.color="green";

 document.getElementById("status" + form).innerHTML="Successfully Signed Up!";

 document.getElementById("firstname" + form).value="";

 document.getElementById("lastname" + form).value="";

 document.getElementById("email" + form).value="";

 document.getElementById("profession" + form).value="";

 }

 });

 }

 else{

 document.getElementById("status" + form).style.color="red";

 document.getElementById("status" + form).innerHTML="Incorrect Values!";

 }

 return false;

});

}

</script>

<!--sign up for for main newletter-->

<form class="signup-form" name="form" onsubmit="return=false;" >

 <h2>Main Email List</h2>

 <input value="1" id="formid1" style="display:none;" type="text">

 <label for="">First Name</label>

 <input id="firstname1" name="firstname" type="text">

 <label for="">Last Name</label>

 <input id="lastname1" name="lastname" type="text">

 <label for="">Email</label>

 <input id="email1" name="email" type="text">

 <select id="profession1" name="profession">

 <option value="Designer">Designer</option>

 <option value="Architect">Architect</option>

 <option value="Retail Customer">Retail Customer</option>

 <option value="Lighting Consultant">Lighting Consultant</option>

 <option value="Electrician/Contractor">Electrician/Contractor</option>

 <option value="Other">Other</option>

 </select>

 <input id="identifier1" name="identifier" style="display:none;" value="1" type="text">

 <input type="button" onclick="clientSubmit(1);" name="submit" value="Sign Up" />

 <p id="status1"></p>

</form>

<form class="signup-form" name="form" onsubmit="return=false;" >

 <h2>Lighting Updates</h2>

 <input value="2" id="formid2" style="display:none;" type="text">

 <label for="">First Name</label>

 <input id="firstname2" name="firstname" type="text">

 <label for="">Last Name</label>

 <input id="lastname2" name="lastname" type="text">

 <label for="">Email</label>

 <input id="email2" name="email" type="text">

 <input id="identifier2" name="identifier" style="display:none;" value="2" type="text">

 <input type="button" onclick="clientSubmit(2);" name="submit" value="Sign Up" />

 <p id="status2"></p>

</form>

<form class="signup-form" name="form" onsubmit="return=false;" >

 <h2>Recommended Products</h2>

 Josiah Orange

56

 <input value="3" id="formid3" style="display:none;" type="text">

 <label for="">First Name</label>

 <input id="firstname3" name="firstname" type="text">

 <label for="">Last Name</label>

 <input id="lastname3" name="lastname" type="text">

 <label for="">Email</label>

 <input id="email3" name="email" type="text">

 <input id="identifier3" name="identifier" style="display:none;" value="3" type="text">

 <input type="button" onclick="clientSubmit(3);" name="submit" value="Sign Up" />

 <p id="status3"></p>

</form>

adminjava.js

window.onload = function() {

 var nodeImages = document.getElementsByClassName("node-images");

 function updateImages() {

 Object.keys(nodeImages).forEach(key => updateImage(key));

 }

 function updateImage(key){

 if (nodeImages[key].src != ""){

 nodeImages[key].src = nodeImages[key].src.split("?")[0];

 }

 }

 setInterval(updateImages, 2000);

}

window.onbeforeunload = function(event)

{

 return confirm("Confirm refresh: Data may be lost.");

};

//function called when user clicks on their window.

window.addEventListener('click', function(e){

 var allNodes = document.getElementsByClassName("draggable") //gets all nodes with the ability to be dragged

 for (i = 0; i < allNodes.length; i++) {

 //if element clicked on is a draggable node, pause dragging capabilities and show the node controls

 if (allNodes[i].contains(e.target)){

 allNodes[i].setAttribute('draggable', false);

 allNodes[i].style.border="1.5px solid orange";

 allNodes[i].style.cursor="text";

 if(allNodes[i].classList.contains("custom-node")){ //if it is a node inside constructionbox

 var nodeIdentifier = allNodes[i].id.charAt(allNodes[i].id.length-

1); //get the nodes unqiue number to be able to target its controls

 var x = document.getElementById("nodecontrol" + nodeIdentifier);

 x.style.display = "initial"; //display the nodes controls to user

 }

 //if the element clicked on isnt a draggable node, resume all dragging capabilities and turn off controls

 }

 else{

 allNodes[i].setAttribute('draggable', true);

 allNodes[i].style.border="0.5px solid #888";

 allNodes[i].style.cursor="pointer";

 if(allNodes[i].classList.contains("custom-node")){

 var nodeIdentifier = allNodes[i].id.charAt(allNodes[i].id.length-1);

 var a = document.getElementById("nodecontrol" + nodeIdentifier);

 a.style.display = "none";

 }

 }

 Josiah Orange

57

 }

 });

function deleteNode(ev){

 ev.target.parentElement.style.display = "none";

 ev.target.parentElement.previousElementSibling.innerHTML = "";

}

function allowDrop(ev) {

 ev.preventDefault();

}

function nodrop(ev){

 ev.preventDefault();

}

//set data transfer data to id of node being dragged

function drag(ev) {

 ev.dataTransfer.setData("text", ev.target.id);

}

//inserting a node after a reference node

function insertAfter(referenceNode, newNode) {

 referenceNode.parentNode.insertBefore(newNode, referenceNode.nextSibling);

}

function drop(ev) {

 ev.preventDefault();

 if(ev.target.class != "draggable"){ //if the dropping position doesnt already contain a node

 var data = ev.dataTransfer.getData("text"); //get the data transfer data (the id of the dragging node)

 // if the node being dragged was inside construction box

 if(document.getElementById(data).classList.contains("custom-

node") && ev.target.parentElement.id != document.getElementById(data).id && ev.target.parentElement.id != "" && ev.target.

id != "construction-box")

 {

 if(ev.target.childNodes.length == 0 && ev.target.className != "space-

node"){ //if the destination position is empty then append the dragging node

 alert((ev.target.classList));

 //copy the original nodes controls.

 var nodeCopyControls = document.getElementById(data).parentElement.nextElementSibling.cloneNode(true);

 //remove the original node controls

 document.getElementById(data).parentElement.nextElementSibling.remove();

 ev.target.appendChild(document.getElementById(data));

 insertAfter(ev.target, nodeCopyControls);

 }

 //if the destination position already has a node inside then swap the nodes.

 else{

 var nodeCopy = document.getElementById(data).cloneNode(true);

 var parent = ev.target.parentElement;

 var nodeCopy2 = parent.cloneNode(true);

 var parent1 = document.getElementById(data).parentElement;

 var parent2 = parent.parentElement;

 var nodeCopyControls = document.getElementById(data).parentElement.nextElementSibling.cloneNode(true);

 var nodeCopy2Controls = parent.parentElement.nextElementSibling.cloneNode(true);

 parent1.innerHTML = "";

 parent2.innerHTML = "";

 Josiah Orange

58

 parent1.nextElementSibling.remove();

 parent2.nextElementSibling.remove();

 parent2.appendChild(nodeCopy);

 insertAfter(parent1, nodeCopy2Controls);

 parent1.appendChild(nodeCopy2);

 insertAfter(parent2, nodeCopyControls);

 }

 }

 // if the original node being dragged wasnt inside construction box then prepare node for construction box, giving i

t a unique id.

 else{

 var nodeCopy = document.getElementById(data).cloneNode(true);

 var counter = parseInt(document.getElementById("counter").value);

 document.getElementById("counter").value = counter + 1;

 nodeCopy.className = "custom-node draggable";

 // if the node is an image node

 if(document.getElementById(data).id == "drag4"){

 nodeCopy.children.item(0).id = nodeCopy.children.item(0).id + counter;

 nodeCopy.id = document.getElementById(data).id + "custom" + counter;

 imageUploadForm = "<form id=\"image-upload-form" + counter + "\" enctype=\"multipart/form-

data\" method=\"post\"><input id=\"image-info" + counter + "\" name=\"image-

info\" type=\"file\" onchange=\"document.getElementById('node-

image" + counter + "').src = window.URL.createObjectURL(this.files[0]);addImage(" + counter + ")\"/></form>"

 nodeCopy.removeChild(nodeCopy.children.item(2));

 nodeCopy.innerHTML = nodeCopy.innerHTML + imageUploadForm;

 }

 nodeCopy.id = document.getElementById(data).id + "custom" + counter;

 if(ev.target.childNodes.length == 0){ //if the drop position is empty then append the altered node and add the co

ntrols

 ev.target.appendChild(nodeCopy);

 var nodeControls = document.createElement("div");

 nodeControls.id = 'nodecontrol' + counter;

 nodeControls.className = 'nodecontrol';

 nodeControls.innerHTML = '<button class="delete-button" onclick="deleteNode(event)">Delete</button>';

 //var nodecontroldef = '<div id="nodecontrol' + counterplusone + '" class="nodecontrol"><button onclick="deleteN

ode(event)">Delete</button></div>';

 insertAfter(ev.target, nodeControls);

 //add new empty drop position

 const div = document.createElement('div');

 div.id = "drop-position"

 div.innerHTML = '<div class="custom-node" ondrop="drop(event)" ondragover="allowDrop(event)"></div>';

 document.getElementById("construction-box").appendChild(div);

 }

 }

 }

}

//<div id="nodecontrol' + counterplusone + '" class="nodecontrol"><button onclick="deleteNode(event)">Delete</button></div

>

function fillInTemplate(tempContent, tempSubject){ //empties and fills up the contruction box with the template

 document.getElementById("construction-box").innerHTML = "";

 Josiah Orange

59

 document.getElementById("construction-box").innerHTML = tempContent;

 document.getElementById("email-subject").value = tempSubject;

}

adminstyle.css

/*Adding fonts*/

@font-face {

 font-family: 'OpenSans';

 src: url('../../fonts/OpenSans-Light.ttf');

 font-style: normal;

 font-weight: 300;

 font-display: swap;

}

@font-face {

 font-family: 'OpenSans';

 src: url('../../fonts/OpenSans-Regular.ttf');

 font-style: normal;

 font-weight: 400;

 font-display: swap;

}

@font-face {

 font-family: 'OpenSans';

 src: url('../../fonts/OpenSans-Bold.ttf');

 font-style: normal;

 font-weight: 700;

 font-display: swap;

}

@font-face {

 font-family: 'Roboto';

 src: url('../../fonts/Roboto-Thin.ttf');

 font-style: normal;

 font-weight: 100;

 font-display: swap;

}

@font-face {

 font-family: 'Roboto';

 src: url('../../fonts/Roboto-Light.ttf');

 font-style: normal;

 font-weight: 300;

 font-display: swap;

}

@font-face {

 font-family: 'Roboto';

 src: url('../../fonts/Roboto-Regular.ttf');

 font-style: normal;

 font-weight: 400;

 font-display: swap;

}

@font-face {

 font-family: 'Roboto';

 src: url('../../fonts/Roboto-Italic.ttf');

 font-style: italic;

 font-weight: 400;

 font-display: swap;

}

@font-face {

 font-family: 'Roboto';

 src: url('../../fonts/Roboto-Medium.ttf');

 font-style: normal;

 font-weight: 500;

 Josiah Orange

60

 font-display: swap;

}

@font-face {

 font-family: 'Roboto';

 src: url('../../fonts/Roboto-Bold.ttf');

 font-style: normal;

 font-weight: 700;

 font-display: swap;

}

body{

 margin:0;

 padding:0;

 font-family: Roboto;

 font-weight:400;

}

html{

 height:100%;

}

/*Styling for all nodes in contruction box.*/

.custom-node {

 width: 100%;

 min-height: 70px;

 border:none;

}

/*Shows when construction box node is hovered over.*/

.custom-node:hover{

 border:1px solid grey;

}

#custom-node{

 padding:10px;

}

/*General styling for all nodes*/

.draggable{

 cursor: pointer;

 border: solid;

 border-color: #888;

 border-width: 0.5px;

 border-radius: 5px;

 padding: 10px;

 margin-top:5px;

}

/*Styling for main area of the admin area which allows for the left and right section to be positioned*/

#builder-wrapper{

 display: flex;

 justify-content: left;

 padding-top:30px;

 max-width:1500px;

 margin:40px;

 height:100%;

}

/*These are the left and right sections that sit next to each other inside builder-wrapper.*/

#builder-left{

 width:50%;

 padding:30px;

 padding-left:0px;

}

#builder-right{

 width:50%;

}

/*Styling for the construction box wrapper*/

#construction-box{

 border: solid;

 border-width: 1px;

 Josiah Orange

61

 display:flex;

 justify-content: left;

 flex-direction: column;

 height:auto;

 overflow: hidden;

 height:100%;

 padding:20px;

 border-radius: 5px ;

}

/*Header styling*/

header{

 display:flex;

 justify-content: center;

 align-items: center;

 background-color: #c06400;

 margin:0px;

}

header p{

 cursor: pointer;

 padding:20px;

 padding-top: 10px;

}

header a{

 color:black;

 text-decoration: none;

}

header h1{

 padding:20px;

 color:white;

}

/*Log out button styling*/

header input{

 background-color: #fff;

 border-radius: 5px;

 padding:5px;

 padding-right: 10px;

 padding-left: 10px;

}

/*Controls for each node (the delete button) initially not displayed.*/

.nodecontrol{

 display: none;

}

/*Styling for the controls for the construction box above the construction box*/

#construction-controls{

 display:flex;

 padding-top:20px;

 padding-bottom: 20px;

 align-items:flex-start;

 justify-content: left;

 flex-direction:row;

}

#construction-controls input{

 height:40px;

 border-radius: 5px;

 box-shadow: none;

 background-color:#c06400;

 color:white;

}

#construction-controls select{

 height:40px;

 border-radius: 5px;

 Josiah Orange

62

 box-shadow: none;

 background-color: white;

}

/* Styling for the Email Subject Input */

#email-subject{

 padding:20px;

 width:94%;

 font-size: 1.5rem;

 border-radius: 5px;

}

/*Styling for pop up. Not initally displayed and has a fixed position on the web page.*/

.pop-up {

 display: none; /* Hidden by default */

 position: fixed; /* Stay in place */

 z-index: 1; /* Sit on top */

 padding-top: 100px; /* Location of the box */

 left: 0;

 top: 0;

 width: 100%; /* Full width */

 height: 100%; /* Full height */

 overflow: auto; /* Enable scroll if needed */

 background-color: rgb(0,0,0); /* Fallback color */

 background-color: rgba(0,0,0,0.4); /* Black w/ opacity */

}

/*Wrapper inside pop up box*/

.recipient-wrapper {

 background-color: #fefefe;

 margin: auto;

 padding: 40px;

 border: 1px solid #888;

 width: 80%;

}

/* The Close Button */

.close {

 color: #aaaaaa;

 float: right;

 font-size: 28px;

 font-weight: bold;

}

.close:hover,

.close:focus {

 color: #000;

 text-decoration: none;

 cursor: pointer;

}

.node-title{

}

.delete-button{

 background-color: #ff1717;

 color:#fff;

 border-radius: 5px;

}

#template-choose{

 height:100%;

}

.ic-node{

 display:flex;

 flex-direction: column;

 align-items:flex-start;

 padding-right: 20px;

}

#construction-controls .icmulti input{

 Josiah Orange

63

 height:30px;

}

#construction-controls .icmulti select{

 height:35px;

}

#tem-form{

 margin-bottom:10px;

}

#construction-controls #template-name{

 margin-bottom: 10px;

 background-color: white;

 color:initial;

}

#space-right{

 margin-right:30px;

}

/* Spacing for the Login Area. */

#login-area{

 padding:50px;

}

frontjava.js

function valEmail(email){ //Validates the string inputed to make sure it fits the email forma using regex.

 const check = /^[a-z0-9]+@[a-z0-9]+(\.[a-z]+)+$/;

 return check.test(String(email).toLowerCase());

}

function valName(name){ //makes sure string input starts with a capital to fit name format usign regex.

 const check = /^[A-Z][a-z]*$/;

 return check.test(String(name));

}

frontstyle.css

body{

 margin:0;

 padding:0;

 height:100%;

}

html{

 height:100%;

}

/*Header stlyes*/

header{

 display:flex;

 justify-content: center;

 align-items: center;

 background-color: #c06400;

 margin:0px;

}

header p{

 cursor: pointer;

 padding:20px;

 padding-top: 10px;

}

header h1{

 padding:20px;

 padding-top: 10px;

}

.nodecontrol{

 display: none;

}

 Josiah Orange

64

/*Styles for sign up forms*/

.signup-form{

padding:30px;

display:flex;

flex-direction: column;

width:50%;

}

.signup-form input{

 height:30px;

 margin-top:10px;

 margin-bottom:10px;

}

.signup-form select{

height:30px;

margin-top:10px;

margin-bottom:10px;

}

encryption.php

<?php namespace admin;

class Encryption{

 static function decrypt($cypherTxt){ //Decrypting the cypher text using the one time pad key stored in a text file on

the server.

 $key = file_get_contents("encryptionkey.txt"); // Get key.

 if (strlen($cypherTxt) != strlen($key)){ // If the cypher text might lose the space value if its at the end of th

string - this reverts this problem.

 $cypherTxt .= ' ';

 }

 for ($i = 0; $i < strlen($key); $i++){ // Decrypting algorithm. Shfiting the ascii values back to the plain text a

ccording to the key.

 $ascii[$i] = ((int) ord ($cypherTxt[$i])) - ((int) ord ($key[$i]));

 while ((int)$ascii[$i] < 33){ //Values must stay between the ascii values 33 and 126 so they can be stored in

a string.

 $ascii[$i] = 33 - ((int)$ascii[$i]);

 $ascii[$i] = 126 - (int) $ascii[$i];

 }

 }

 $plainTxt = '';

 for ($x = 0; $x < count($ascii); $x++){ //assigning the asscii values onto plain text converting to a char.

 $plainTxt .= chr ((int) $ascii[$x]);

 }

 return $plainTxt;

 }

 static function encrypt($plainTxt){

 $length = strlen($plainTxt);

 $characters = '!"#$%&\'()*+,-

./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~'; //all possible characters that can be

 a part of the one time pad key

 $charactersLength = strlen($characters);

 $rndKey = '';

 for ($i = 0; $i < $length; $i++) {

 Josiah Orange

65

 $rndKey .= $characters[rand(0, $charactersLength - 1)];

 }

 file_put_contents("encryptionkey.txt", $rndKey); //store generated one time key

 $ascii = array();

 for ($i = 0; $i < strlen($rndKey); $i++){ //encryption algorithm

 $ascii[$i] = ((int) ord ($plainTxt[$i])) + ((int) ord ($rndKey[$i]));

 while ((int)$ascii[$i] > 126){ //Values must stay between the ascii values 33 and 126 so they can be stored in

 a string.

 $ascii[$i] = 33 + ((int)$ascii[$i] - 126);

 }

 }

 $cypherTxt = '';

 for ($x = 0; $x < count($ascii); $x++){

 $cypherTxt .= chr ((int) $ascii[$x]);

 }

 return $cypherTxt;

 }

}

Bibliography
GitHub. (n.d.). PHPMailer . Retrieved from GitHub: https://github.com/PHPMailer/PHPMailer
w3Schools. (n.d.). How TO - CSS/JS Modal. Retrieved from w3Schools:

ahttps://www.w3schools.com/howto/howto_css_modals.asp
w3Schools. (n.d.). PHP File Upload. Retrieved from w3Schools: https://www.w3schools.com/php/php_file_upload.asp
w3Schools. (n.d.). PHP MySQL Insert Data. Retrieved from w3Schools:

https://www.w3schools.com/php/php_mysql_insert.asp
w3schools. (n.d.). HTML Drag and Drop API. Retrieved from w3schools.:

https://www.w3schools.com/html/html5_draganddrop.asp

